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Possibility of a gravitational effect in the spectra of quasi- 
stellar objects I11 

M C Durgapal 
Department of Physics, University of Jodhpur, Jodhpur, India 

Received 29 October 1974, in final form 22 May 1975 

Abstract. In this concluding paper it is shown that quasi-stellar objects are most probably 
situated at cosmological distances. The large redshifts of these objects cannot be due to 
surface gravitational effects. The Hoyle-Fowler model perhaps holds a last hope of attri- 
buting redshift to gravity. Different cluster solutions have been analysed to formulate a 
suitable Hoyle-Fowler model. A modified Hoyle-Fowler model may explain the emission 
spectrum of quasars, but such a model developed in this paper fails to give a satisfactory 
explanation of absorption spectra. However, a Hoyle-Fowler model at cosmological 
distance may possibly explain sharpness and depth of absorption lines. The Hoyle-Fowler 
model which was originally designed to provide a non-cosmological model of quasi-stellar 
objects provides a more satisfactory result if it is at a cosmological distance. 

1. Introduction 

Quasi-stellar objects (QSO) show very large redshifts of spectral lines. The most accepted 
explanation is that QSO are at cosmological distances. The problems arising out of 
large energies associated with these objects, the periodic variations of optical and radio 
flux, the association of QSO with nearby clusters, the anomaly in the redshift-apparent 
magnitude relation etc, have given rise to the idea that QSO might have some intrinsic 
redshift. The local hypothesis (Terre1 1964, Hoyle and Burbidge 1966) seems to be highly 
improbable because of the absence of blueshifted QSO (Faulkner et a1 1966) and involve- 
ment of very high energies (Setti and Woltjer 1966, Bahcall er a1 1966). 

One of the methods by which redshift may possibly be explained can be developed 
by assuming a massive spherical configuration with large gravitational potential. An 
analysis by Bondi (1964) leads to the conclusion that if appropriate conditions on stability 
and equation of state are imposed, z, (the redshift from the surface) cannot exceed 0.62. 
The maximum observed redshift is about 3.5 (Wampler et al 1973). Even without con- 
sidering the stability of the configuration, Greenstein and Schmidt (1964) analysed the 
spectra of QSO 3C273 and 3C48. They concluded from the intensity of forbidden lines 
and the estimated electron density that QSO having gravitational redshifts can neither 
exist near the Galaxy nor in the nearby Galactic sphere. But Burbidge (1967) has 
pointed out in connection with absorption spectra of some QSO that possibly their red- 
shifts are gravitational. These QSO do not exhibit forbidden lines in their emission 
spectra ; hence the analysis given by Greenstein and Schmidt cannot be applied. 
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Mostly in QSO showing absorption lines, the emission spectra do not show forbidden 
lines and redshifts of spectral lines are different in absorption and emission. One is then 
tempted to attribute redshift to a gravitational origin. Recently Morton and Morton 
(1972) took two spectra of Ton1530 at an'interval of one year. They observed that the 
redshift of absorption lines remains unaltered to an accuracy Of 4 in lo5. If the emission 
lines are supposed to have a purely surface gravitational redshift then it can be shown by 
analysing the radial and transverse motion of the absorption clouds (Durgapal 1974b) 
that the QSO must be at a distance of more than lo3 Mpc and must have a mass of the 
order of 10'' MO, a highly objectionable result. 

However, a Hoyle-Fowler type of model (Hoyle and Fowler 1967) may possibly 
account for intrinsic redshift. The limitation of the Hoyle-Fowler model is discussed 
and different cluster solutions have been analysed to develop a suitable model for 
quasars. It has been shown that even a modified version of the Hoyle-Fowler model 
does not lead to satisfactory results and certain phenomena cannot be explained. The 
most suitable conclusion one can derive is that QSO are at cosmological distances. 

2. The Hoyle-Fowler (HF) model 

In a Hoyle-Fowler type of model the observed emission lines come from the centre of a 
spherical configuration and z,, = z,. The main mass (in the form of clusters of neutron 
stars or other highly collapsed objects) serves to generate a strong gravitational field. 
Further, Hoyle and Fowler suggested that static equilibrium positions are possible in 
principle for clouds of ions that surround the central cloud. This suggestion would 
require z,, > zab for these static clouds. 

2.1. Isotropic clusters 

Hoyle and Fowler (1967) used Schwarzschild internal solutions with constant density 
to show that 

(1 + zc)/(l + zs) = 2/(2 - z,) (1) 

and that as P, -, x, z ,  -+ 2 and z ,  -, 00. Fackrell (1968) has proved that an isotropic 
cluster with constant density cannot be stable since the distribution function becomes 
negative for 

(2) 3 3  - J3)1/2 eiv(a)mcz < E < efv(a)mcz 

where e' has its usual meaning (that is, the factor which appears in the metric 

dsz = ev@) dtz -eA(") dr2 - r2 de2 - r2 sinZ 6 &j2). 

Ipser (1969) showed that relativistic polytropic clusters with polytropic indices 2 
and 3 are unstable if the redshift from the centre (z,) exceeds 0.5. Fackrell (1970) puts 
the limit for stability at z ,  ,< 0.7302 by considering spheres with polytropic index 4. 
Fackrell arrived at this limit of z, by considering an extreme core-halo density distribu- 
tion and it would not be improper to consider this as an upper limit for stable isotropic 
clusters. Though Tolman's (1939) IV, V and VI solutions indicate the possibility of 
infinitely large z,, their stability is doubtful. Solution IV has a negative distribution 
function (this can be seen by using Fackrell's method of 1968). 
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By considering a spherical configuration of infinite radius, Tolman's V and VI 
solutions reduce to self-similar solutions (Kogan and Zeldovich 1969) with 

P = yp = 4y2/8nrz(y2  + 6y + l ) ,  

e' = constant x r 4 ~ ' ( ~ +  I ) ,  eA = constant. 
(3) 

Kogan and Thorne (1970) showed that the most powerful techniques yet devised yield 
inconclusive results for stability of these (self-similar) clusters. The difficulty with this 
model is that one always gets infinite central redshift (from equation (3)). However, 
one may construct a two-density distribution to avoid this. But then the model will 
become too complicated to explain various properties of quasars ; moreover, the 
infinitely large radius will make the model unsuitable. 

2.2. Circular orbits 

For circular orbits, TL, = T,, = 0 so that v' = (e'- l ) / r  (Zeldovich and Novikov 1971) 
where a prime stands for d/dr. Recently Florides (1974) has discussed the physical 
rationality of such solutions. With a given p(r)  the functions v(r) and A(r) may be readily 
determined. Without going into the details of calculations the metrics for different 
density distributions are given below. For the sake of brevity we may put 

k = m/a,  x = r z / a 2  and dRz = rZ(dOz +sinZ 8 d4*)  (4) 

where m and a are the mass and radius of the spherical configuration. 
(i) Density a rN-' (where N > 0). The metric is given by 

drz 
- - dR2. 

( 1  - 2k)' + l i N  dtz 
[1-2k(r/a)"]'/" 1 -2k(r,'a)" 

dsz = 

For N = 2 the density is constant and we get 

ds2 = ( 1  - 2k)3'z( l  - 2kx)-  dt2 - ( 1  - 2kx)-  drz - doz .  (56 )  

This metric is identical to the solution obtained by Florides (1974) for a constant density 
sphere with zero radial stress. 

(ii) eYv'/r(l /n)-  1 = constant (where e' has its usual meaning and 11' = dv/dr). One 
can easily obtain (see Tolman's IV solution) 

( 6 )  
1 - 2(n + l )k  + 2(n + l )k(r /a) ' /" 

1 - 2(n + 1)k + 2nk(r/a)"" 
dsz = [ 1 - 2(n + 1)k + Znk(r/a)""] dtz - drz - dRz 

and density 

For values of n > f the density at the centre will be infinite, while for n < 4 the 
density increases as one moves out from the centre to the surface. Only when n = f, the 
density is positive finite throughout the configuration and decreases from centre to 
surface. 
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The metric for n = 4 is 
ds2 = ( 1 - 3 k + k x ) d t 2 - ( 1 - 3 k + 3 k x ) ( l - 3 k + k x ) - '  dr2-dQ2 (8) 

(9) 
3k( 1 - 3k + 2kx) and p(surface) 

p(centra1) 
= (l-k)(l-3k).  

= 4za2( 1 - 3k + 3kx)' 

The metric for n = 2 is 

1 - 6k + 6k J ( r /a )  dr2  - dQ2 

1 - 6k + 4kJ(r/a) 
ds2 = [1-6k+4kJ(r/a)] dt2-  

This metric is important when one considers stable orbits. 
(iii) Density a r-' (similar to Tolman's V and VI solutions and the self-similar 

solution of equation (3)). This solution has been discussed by Zeldovich and Novikov 
(1971) to show the possibility of infinitely large redshift. The metric can be written as 

ds2 = (1 - 2k)x" dt2 - (1 - 2k)- dr2 - dRZ (1 1) 

where 

n = k/( 1 - 2k). 

(iv) Density cc 1 - ?/aZ (see Tolman's VI1 solution). Using equation v' = (eL - l)/r 
and the results of Durgapal and Gehlot (1971), we obtain 

- dR2 (13) 
dr2 

ds2 = e" dt2 - 
1 - kx(5 - 3x) 

where 

( l - 2 l ~ ) ~  ) -- 5(  ~ k ) I"  tan-l(J[k(12-25k)](l-x) 
1 - k x ( 5 - 3 ~ )  2 12-25k 2 -5k + kx (14) 

2.3. Limitation on clusters with circular orbits 

It is well known that no material particle can move in a circular orbit in a Schwarzschild 
exterior field of radius a d 3m. Thus for solutions with Ti, = T,, = 0 we put the 
restriction (Florides 1974) 

a > 3m. (15) 

A more reasonable limit (Zapolsky 1968) can be arrived at by assuming that dif- 
ferent stars in the cluster are moving in stable orbits. For a stable circular orbit, 

r 2 6m(r) (16) 

where m(r) is the mass contained within the radius r. It can be seen from 9 2.2 that condi- 
tion (16) reduces to 

a 2 6m. (17) 

An analysis of different solutions has been done and the results are summarized in 
table 1. 
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Table 1. Central redshift for different density distributions. 

Central redshift when 
a = 3m a = 6 m  

Density = constant 
Density (I r - ’  
Density (I 1 - r2 /a2  

1.279 0,355 
r- CO 

1.995 0,483 
0.4 14 
cc, 

2.4. Model for quasars 

From table 1 it is clear that the cluster structures which can provide us with a proper 
local HF model are: (i) solutions with density K (radius)-2, and (ii) solutions with 
e v v J / r ( l l n ) -  1 = constant. 

(i) p a l/r2 (see also self-similar solutions, equation (3)). The difficulty with this 
solution is that the central density is infinity and one always gets infinite central red- 
shift. The redshift of quasars is finite. One can assume a suitable radius r = Au for an 
emission cloud such that 

1 + z,, = (2n + 1)”2(u/Au)” 

102”(2n+ 1 ) 1 / 2  = 1 +z,,. 

(18) 

(19) 

The lines originating from the interior of the emission cloud will be more redshifted 
than those originating at r = Aa, so much so that the lines originating at r = 0 are 
infinitely redshifted (at N e  = 104-106 and Au pc the forbidden lines have very 
low optical depth). The extremely large width of emission lines will make the spectrum 
featureless. Thus this solution is unable to provide us with a suitable model of QSO. 

(ii) evv’/r(lin)-l = constant. For n = f this solution corresponds to a cluster with 
positive finite density throughout (equation (9)). It is possible to construct a model of 
a quasar with any large redshift. The central redshift is given by (from equation (8)) 

where z,, is the emission redshift of the quasar. In the HF model Au 1 10-’a, thus 

and the redshift z, at a distance r from the centre is 

From equations (20) and (21) it can be shown that the width w of emission lines due to 
change in gravitational potential across the central emission cloud is given by 

- = 2 - -  w m ( A u ) 2 (  3:)-’ 
x u u  

If there is a static absorption cloud at a distance r from the centre, it can easily be shown 
that 

r/a = [3( f 2  - 1)/ze,,,(2 + z,,)]”~ 
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where 

This model (equations (20) to (23)) has been applied in $3.2 to discuss the absorption 
spectra of some quasars. 

If we consider the stability condition as a 3 6m, the solution with n = 2 should be 
used. The drawback with this solution is the existence of infinite central density. 
However, the mass contained in a finite volume is finite. The central redshift is given by 

and 

w 2m Aa ‘ I 2  6m -’ :=&) (I-;) 

As compared to equation (22) we get about 1000 times broader lines from equation 
(26). Hence this model is not as suitable as that with n = in discussing the spectra of 
quasars. 

3. Absorption spectra and HF models 

One of the most important features of the absorption spectra is the sharpness of absorp- 
tion lines. A model of QSO must be such that the gravitational linewidth does not exceed 
30 km s- l  (w/2 5 or so. 

3.1. Width of absorption lines in H F  models 

Let the cosmological redshift of a QSO be Z ;  then 

;./io = ( 1  + ~ ) e - + ~ ( ~ )  

where 

i. = observed wavelength of absorption line 
,io = unshifted wavelength of absorption line 
r = distance of absorption cloud from the centre. 

In different models the linewidth will be different. 
(i) Constant density H F  model 

U’ _ -  - e m [  
1 a a a  

- ”( i) ’1 - 1 
a a  
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where 
w = i-i.' K ,i and 

f - r  = thickness of absorption cloud = Ar << r .  

(ii) Varying densicy H F  model with e' = constant x r2n (Durgapal 1974c, Zeldovich 
and Novikov 1971 and equations (3), (11) and (12) of this paper). From 

e i v ( r )  = (2n + 1)- 1/2(r/a)" (31) 

we have 
w/j. = (1 +z,) eIv(r)(eiv(r')/eiv(r)- 1) 

= (r' /r)"- 1 = nAr/r (32) 

= (m/a) (Ar /r ) (  1 - 2m/a)- 
where 

(33) 

m/a = n/(2n + 1). (34) 
(iii) Modified H F  model with e'v'/r = constant (4 2.4(ii)). For this model (from 

equation (8)) 

Now, 

or 
2 m  r Ar 

A a a  a 
- W 

- - ( l+z , )  - - -. 

The gravitational width depends upon the ratios mla, ria and Ar/a .  

3.2. H F  model at small distance 

The absorption spectra of QSO Ton1530 and 4C05.34 have been discussed by using the 
modified model of 4 3.l(iii) (equations (20H23), (35),  (36)). 

(i) Ton1530. z,, = 2.047. Distances of the two absorption clouds are r /a  = 0.13 
(for zab = 1.9803) and 0.156 (for zab = 1.93702). A peculiarity is the observation of a 
triple feature (z' = 1.9358, zo = 1.9371, z -  = 1.9384) in the C IV absorption lines. The 
splitting Az = f0.0013 on either side of the central line corresponds to a distance 
d = f0401a  of satellite clouds from the zo cloud. 

The width of absorption lines due to variation of gravitational potential across the 
cloud is given approximately from equation (36) by 0.4Arla < (for AuD = 40 
km s -  '). Hence 

Ar < 2.5 x 10-4a and Ar/d < $. (37) 
The column density of the C IV line is of the order of 1014 cm-2. If a = 1 pc, the num- 
ber of ions per cm3 is of the order of at least lo-'. Absence of any transition from the 
excited level of the fine structure ground state is consistent with this particle density. 
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The model fails to give an explanation of the fact that the residual intensity in some 
cases is almost zero, because 

Size of absorption cloud Ai- 
Size of central cloud Aa 

= - x 

It is unfair to assume a plate-like cloud with radius Aa and thickness Ar. This is a serious 
drawback of a local H F  object. 

(ii) 4C05.34. The futility of the HF model is shown in explaining the spectrum of 
4C05.34 which has z,, = 2.877 and z,b = 2.8751, 24106, 2.7703, 2.5925, 2.4743, 2.1819, 
1.8593, 1.7758. These absorption features occur at r/a = 0~014,0~09,0~11,0~19,0~23,0~32, 
0.43 and 0.45 respectively. Transitions are from fine structure ground states of CII,  
N 11, Si 11, Fe 11 and Fe III. No lines from excited fine structure are definitely identified. 
Hence one can say (Bahcall and Goldsmith 1971) that N e  5 lo2 and D 2 E X  lo3 pc, 
where D is the distance of the absorption cloud from the QSO continuum and 

Actual distance of QSO(R) 
Distance of QSO if redshift is due to cosmological expansion 

E = -  

Hence 

io-2a 2 x 103 pc or a 2 6 x 10’ pc. 

If R = 1 to 10 Mpc, E = giving a ‘c lo2 pc and m 2: 10”Ma. A huge mass of 
this magnitude at such a short distance is highly improbable. If R = 100 Mpc, E 2 
and a 2 lo3 pc with a mass m 2 1016Mo. Less than lo3 such objects will be sufficient 
to account for the entire missing mass (Sandage 1965 estimated the number of QSO at 
about 10 ’). 

Similar difficulties will arise in explaining the absorption spectra of PHL957 and 
PKS0237-23. Thus in absorption spectra of QSO it is difficult to explain (i) the depth and 
sharpness of absorption lines simultaneously and (ii) the absence of transitions from 
excited levels of fine structure ground states, if they are local HF objects. If the H F  
models with p a l / r2  or p a r N - 2  (with N > 0) are applied to the above cases, the 
results will be even more disappointing. 

3.3. H F  model at cosmological distance 

The author (Durgapal 1974a) has already discussed such a possibility. In this section 
an attempt has been made to explain the sharpness of absorption lines. Since the resi- 
dual intensity of many absorption lines reaches zero, the size of the absorption cloud 
Ar 2: Aa. Since Aula N r/a < 1 and m/a = 0.01 to 0.02 in most of the cases. 
Equations (30) and (36) give w/E. 2: in most of the cases. Thus both the sharpness 
and depth of absorption lines may possibly be explained in many (not all) QSO by con- 
sidering the H F  model at cosmological distances. 

However, the phenomenon z,b > z, has to be explained by considering absorption 
clouds falling towards the QSO. The analysis of an earlier paper (Durgapal 1974b) can 
be applied to the modified H F  model with e”v’/r = constant if the expression for gravi- 
tational redshift (Durgapal 1974b, equations (8) and (16)) zbm is replaced by 
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4. Conclusions 

I705 

From the experiment of Morton and Morton (1972) and conclusions of Greenstein 
and Schmidt (1964) we may say that, irrespective of the presence of forbidden lines, 
QSO with purely gravitational surface redshift can neither exist near the Galaxy nor in 
the nearby Galactic sphere. The Hoyle and Fowler (1967) model was proposed to avoid 
objections raised by Greenstein and Schmidt. An analysis of the H F  model has been 
done by considering different types of solutions. As far as the emission spectrum is 
concerned it is possible to explain large redshifts of quasars provided the condition 
for stability is taken as a > 3m. As for the absorption spectrum, the solutions discussed 
in this paper are unable to provide a local H F  model which can simultaneously explain 
the sharpness and depth of the absorption lines. However, the HF model at cosmo- 
logical distance may satisfactorily explain the sharpness and depth of absorption lines 
in many (not all) QSO. Thus we see that even HF models provide a better explanation 
of absorption spectra when they are at cosmological distances. 
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